Examples¶
Here we give more example usage of this package.
Get an existing design from database¶
pydoe.design_query(n=12, s=4, q=6, crit="CD2", show_crit=True)
Evaluate existing designs¶
x = np.array([[1, 2],
[3, 3],
[2, 1]])
pydoe.design_eval(x,crit="CD2")
Generate uniform design from random initialization¶
import numpy as np
import pyunidoe as pydoe
stat=pydoe.gen_ud(n=12, s=4, q=6, init="rand", crit="CD2", maxiter=100, vis=True)
print("The initial design: ")
print(stat["initial_design"])
print("The final design: ")
print(stat["final_design"])
pydoe.design_pairs_plot(stat["final_design"])
Augment uniform design (Runs)¶
import numpy as np
import pyunidoe as pydoe
stat=pydoe.gen_ud(n=12, s=4, q=6, init="rand", crit="CD2", maxiter=100, vis=True)
xp = stat["final_design"]
stat = pydoe.gen_aud(xp=xp, n=24, s=4, q=6, crit="CD2", maxiter=100, vis=True)
print("The initial design: ")
print(stat["initial_design"])
print("The final design: ")
print(stat["final_design"])
pydoe.design_pairs_plot(stat["final_design"])
Augment uniform design (Factors)¶
import numpy as np
import pyunidoe as pydoe
stat=pydoe.gen_ud(n=12, s=4, q=6, init="rand", crit="CD2", maxiter=100, vis=True)
xp = stat["final_design"]
stat = pydoe.gen_aud_col(xp=xp, n=12, s=5 ,q=6, crit="CD2", maxiter=100, vis=True)
print("The initial design: ")
print(stat["initial_design"])
print("The final design: ")
print(stat["final_design"])
pydoe.design_pairs_plot(stat["final_design"])
Multi-shoot Strategy¶
import numpy as np
import pyunidoe as pydoe
x1_multi = pydoe.gen_ud_ms(n=12, s=4, q=6, crit="CD2", maxiter=100, nshoot=5, n_jobs=5, vis=False)
pydoe.design_eval(x1_multi,crit="CD2")
x2_multi = pydoe.gen_aud_ms(x1_multi, n=24, s=4, q=6, crit="CD2", maxiter=100, nshoot=5, n_jobs=5, vis=False)
pydoe.design_eval(x2_multi,crit="CD2")
x3_multi = pydoe.gen_aud_col_ms(x1_multi, n=12, s=5, q=6, crit="CD2", maxiter=100, nshoot=5, n_jobs=5, vis=False)
pydoe.design_eval(x3_multi,crit="CD2")