Resources

Software

To be added …

Reference

Bergstra2011

Bergstra J. S., Bardenet R., Bengio Y. and Kégl B. (2011). Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems, pp. 2546-2554.

Bergstra2012

Bergstra J. and Bengio Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb): 281-305.

Fang1980

Fang, K.T. (1980). The uniform design: application of number theoretic methods in experimental design. Acta Math. Appl. Sin. 3:363-372.

Hutter2011

Hutter F., Hoos H.H. and Leyton-Brown K. (2011) Sequential model-based optimization for general algorithm configuration. In International Conference on Learning and Intelligent Optimization, pp. 507-523. Springer.

McKay1978

McKay, M.D., Beckman, R.J. and Conover, W.J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2): 239-245.

Sobol967

Sobol,I.M. (1967), Distribution of points in a cube and approximate evaluation of integrals. Zh. Vych. Mat. Mat. Fiz. 7: 784-802 (in Russian); U.S.S.R Comput. Maths. Math. Phys. 7: 86-112 (in English).

Snoek2012

Snoek J., Larochelle H. and Adams R.P. (2012). Practical bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems, pp. 2951–2959.

Wang1981

Wang, Y. and Fang, K.T. (1981). A note on uniform distribution and experimental design. Kexue Tongbao 26, 485-489.

Yang2019

Yang Z. B. and Zhang A.J. (2021). Hyperparameter Optimization via Sequential Uniform Designs. Journal of Machine Learning Research, 22(149), pp.1-47.