Source code for pybatdoe.batch_grid

import numpy as np
import pandas as pd
from joblib import Parallel
from joblib import delayed
from itertools import product
from tqdm import tqdm_notebook as tqdm

from .batch_base import BatchBase


[docs]class GridSearch(BatchBase): """ Implementation of grid search. Parameters ---------- :type para_space: dict or list of dictionaries :param para_space: It has three types: Continuous: Specify `Type` as `continuous`, and include the keys of `Range` (a list with lower-upper elements pair) and `Wrapper`, a callable function for wrapping the values. Integer: Specify `Type` as `integer`, and include the keys of `Mapping` (a list with all the sortted integer elements). Categorical: Specify `Type` as `categorical`, and include the keys of `Mapping` (a list with all the possible categories). :type max_runs: int, optional, default=100 :param max_runs: The maximum number of trials to be evaluated. When this values is reached, then the algorithm will stop. :type estimator: estimator object :param estimator: This is assumed to implement the scikit-learn estimator interface. :type cv: cross-validation method, an sklearn object. :param cv: e.g., `StratifiedKFold` and KFold` is used. :type scoring: string, callable, list/tuple, dict or None, optional, default=None :param scoring: A sklearn type scoring function. If None, the estimator's default scorer (if available) is used. See the package `sklearn` for details. :type refit: boolean, or string, optional, default=True :param refit: It controls whether to refit an estimator using the best found parameters on the whole dataset. :type n_jobs: int or None, optional, optional, default=None :param n_jobs: Number of jobs to run in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. See the package `joblib` for details. :type random_state: int, optional, default=0 :param random_state: The random seed for optimization. :type verbose: boolean, optional, default = False :param verbose: It controls whether the searching history will be printed. Examples ---------- >>> import numpy as np >>> from sklearn import svm >>> from sklearn import datasets >>> from sequd import GridSearch >>> from sklearn.model_selection import KFold >>> iris = datasets.load_iris() >>> ParaSpace = {'C':{'Type': 'continuous', 'Range': [-6, 16], 'Wrapper': np.exp2}, 'gamma': {'Type': 'continuous', 'Range': [-16, 6], 'Wrapper': np.exp2}} >>> estimator = svm.SVC() >>> cv = KFold(n_splits=5, random_state=0, shuffle=True) >>> clf = GridSearch(ParaSpace, max_runs=100, estimator=estimator, cv=cv, scoring=None, n_jobs=None, refit=False, random_state=0, verbose=False) >>> clf.fit(iris.data, iris.target) Attributes ---------- :vartype best_score\_: float :ivar best_score\_: The best average cv score among the evaluated trials. :vartype best_params\_: dict :ivar best_params\_: Parameters that reaches `best_score_`. :vartype best_estimator\_: sklearn estimator :ivar best_estimator\_: The estimator refitted based on the `best_params_`. Not available if estimator = None or `refit=False`. :vartype search_time_consumed\_: float :ivar search_time_consumed\_: Seconds used for whole searching procedure. :vartype refit_time\_: float :ivar refit_time\_: Seconds used for refitting the best model on the whole dataset. Not available if estimator=None or `refit=False`. Note ---------- grid search is not recommend for high dimensional hyperparameter tunning. As it is limited by the max_run specified by the user, the grid points may be badly distributed. """ def __init__(self, para_space, max_runs=100, estimator=None, cv=None, scoring=None, refit=True, n_jobs=None, random_state=0, verbose=False): super(GridSearch, self).__init__(para_space, max_runs, n_jobs, verbose) self.cv = cv self.refit = refit self.scoring = scoring self.estimator = estimator self.random_state = random_state self.method = "Grid Search" def _run(self, obj_func): """ Main loop for searching the best hyperparameters. """ discrete_runs = 1 discrete_count = 0 grid_para = {} for item, values in self.para_space.items(): if (values['Type'] == "categorical"): grid_para[item] = values['Mapping'] discrete_runs = discrete_runs * len(values['Mapping']) discrete_count = discrete_count + 1 grid_number = np.ceil((self.max_runs / discrete_runs)**(1 / (self.factor_number - discrete_count))).astype(int) for item, values in self.para_space.items(): if (values['Type'] == "continuous"): grid_para[item] = values['Wrapper'](np.linspace(values['Range'][0], values['Range'][1], grid_number)) if (values['Type'] == "integer"): grid_para[item] = np.round(np.linspace(min(values['Mapping']), max(values['Mapping']), grid_number)).astype(int) grid_number = np.ceil(self.max_runs / grid_number).astype(int) # generate grid para_set = pd.DataFrame([item for item in product(*grid_para.values())], columns=grid_para.keys()) para_set = para_set.iloc[:self.max_runs] candidate_params = [{para_set.columns[j]: para_set.iloc[i, j] for j in range(para_set.shape[1])} for i in range(para_set.shape[0])] if self.verbose: if self.n_jobs > 1: out = Parallel(n_jobs=self.n_jobs)(delayed(obj_func)(parameters) for parameters in tqdm(candidate_params)) else: out = [] for parameters in tqdm(candidate_params): out.append(obj_func(parameters)) out = np.array(out) else: if self.n_jobs > 1: out = Parallel(n_jobs=self.n_jobs)(delayed(obj_func)(parameters) for parameters in candidate_params) else: out = [] for parameters in candidate_params: out.append(obj_func(parameters)) out = np.array(out) self.logs = para_set.to_dict() self.logs.update(pd.DataFrame(out, columns=["score"])) self.logs = pd.DataFrame(self.logs).reset_index(drop=True) if self.verbose: print("Search completed (%d/%d) with best score: %.5f." % (self.logs.shape[0], self.max_runs, self.logs["score"].max()))